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! : Abstract

NP

An integral representation for the particle velocity in terms of a

Green's function and certain linear combinations of the inelastic strain

Lo '
rates -has been used in this paper; both for a numerical method to compute

Chalt 2l

) full field solutions and to develop unequivocal asymptotic expressions for

the near-tip fields. Specific rFesults have been obtained for a statiomary

N crack in a solid whose constitutive behavior is represented by the Bodner- 35
~ e
f Partom model. It is shown that the leading term of the near-tip particle ij:
X SR - ]
velocity is of order'r°, and the higher-order terms are of the forms r logr =
c, oo 7 NP
and r. Expressions‘have beei;derived for the angular variations and for the }f
-. .':':
:j multiplying time-dependent intensity factors. The r logr term is absent
for the Mode-II case. Two questions;héié-boeﬁ)aédressed in further detail:
-~ the dependence of the multiplying terms on time and the importance of the
gt higher-order terms. The numerical results show a stress intensity factor
. which decays with time. At a small distance from the crack tip the numerically
~ Loua s
N computed normalized opening stress(xzz(xl,o,t)/122(x1,0,0)~has beencompared
N with a one-term asymptotic representation, i.e., with KI(t)/KI(O).“vThe two
L)
curves diverge at very small values of time. <The,inclusion of a second term
'; in the asymptotic expression for the stress gives very acceptable agreement
[ as time increases. .
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1. Introduction

A clear understanding of the mathematical structure of the fields of stress
and deformation near a stationary crack tip is an essential prerequisite to
an investigation of conditions for the onset of crack propagation. 1In a
visco-plastic solid the fields in the immediate vicinity of a crack tip can
be very intricate. In this paper near-tip visco-plastic fields>have been
investigated in detail for a class of constitutive models for which the
inelastic strain rate approaches a bounded value as the stresses increase
beyond bounds. The Bodner-Partom model [1], which has been shown to describe
the mechanical response of a wide class of materials, displays this particular
behavior of the inelastic strain rate.

Fields near a crack tip are usually analyzed asymptotically by assuming
a near~tip field of the general form rpf(e). When this expression is sub-
stituted into the governing equations and into appropriate boundary con-
ditions, and terms of equal order in r are collected, there results a
nonlinear eigenvalue problem, which yields both p and £(6). For visco-
elastic solids this method was used by Riedel [2] and Riedel and Rice [3],
who investigated the near tip fields of stationmary cracks for Mode TII and
Mode I, respectively. They considered a viscoelasticconstitutive equation
of the power law type. For the Mode I case their asymptotic solution
displays the well-known HRR singularity if the power is greater than one.

When the power is less than one, the solution becomes square~root singular.



Hul & Riedel [4] considered quasistatically moving cracks for both Mode I

and Mode III conditions. When the power is greater than 3, their singularity
is different from both the HRR and the square-root singular forms, while for
a power less than 3 it reduces to a square-root singularity. Lo [5]

followed the Hui-Riedel approach, but he took into account the effect of
inertia.

The implications of square-root singular as crack-tip fields for visco-
plastic solids have been explored by Hart [6] and Freund and Hutchinson [7].
For a Mode IIIquasi-static steady-state analysis, Hart [6] related the stress
intensity factor at the tip to the corresponding far-field quantity. He also
discussed transient cases on the basis of certain assumptions. Freund and
Hutchinson [7] developed a similar relation between the tip and the far-field
stress intensity factors for the dynamic steady-state Mode I case, using an
essentially linear relation between the stress and the inelastic strain rate.

In this paper a more fundamental approach towards the computation of near-
tip fields is presented, in the sense that asymptotic forms are not assumed
a-priori. 1Instead, the particle velocity field is expressed by a representation
integral over the complete domain of the cracked body. This integral involves
an elastic Green's function and linear combinations of the inelastic strain
rates, Since the imelastic strain rates are bounded at the crack tip, the
integral can be expanded in terms of the distance to the crack tip, to yield
an unequivecal expression for the near-~tip field. Details have been worked
out for a stationary crack tip. It is shown that the leading term of the

particle velocity is of order r*, and the next terms are of the forms r logr




I

and r. Expressions have been derived for the angular variations and for
.é the multiplying time-dependent intensity factors. The r logr term is absent
\ for the Mode-III case. Two pdints are of interest: the dependence of the
A multiplying terms on time and the importance of the higher-order terms.
The representation of the particle velocity in terms of an appropriate
Ly Green's function and the time-rates-of-change of the inelastic strains has

not only been used to obtain near-tip asymptotic expansions of relevant field

A

variables, but also to develop numerical solutions by the use of the boundary

P A

integral equation method, in conjunction with an iteration technique. The
numerical calculations have been carried out under the assumption of small-

scale yielding. Thus, the equations of the Bodner-Partom model have been

b w2 % it e Y]

used in a region around the crack tip. The conditions on the boundary of

P

this region are provided by the singular term of a corresponding elastic

K]

solution. The results show a stress intensity factor which decays with time.

P

At a small distance from the tip the numerically computed normalized opening

stress 122(x1,0,t)/122(x1,0,0) has been compared with a one-term asymptotic

REAALPATEN

representatation, i.e., with KI(t)/KI(O). The two curves diverge at very
small values of time. The inclusion of a second term in the asymptotic
expression for the stress gives very acceptable agreement as time increases.
As early as 1971 the boundary integral equation method (BIEM), also
called the boundary element method (BEM), was applied by Swedlow and Cruse
% {8] for elasto~plastic material behavior. In recent years the method has
been used extensively for the numerical analyses of viscoelastic/plastic
solids of various shapes including bodies containing cracks. Recent work

was summarized by Mukherjee [9].
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: 2. Formulation ‘\’
4
The states of deformation that will be considered are two-dimensional, 15
3
sy
u either plane or antiplane strain. The body contains a straight crack. At K]
co
one of the crack tips, say Al’ the applied loads give rise to elastic stress nci
intensity factors K?(t), K?I(t) and K?II(t), if the material were linearly .Eit
elastic. We will, however, consider a material that displays inelastic "9
behavior as the stress level increases. Hence there will be a domain of t{?
inelastic deformation near the crack tip. It is, however, assumed that this i;}
L
domain is small as compared to the crack length, and that linear elasticity “f
A_‘:$
| applies outside the near-tip domain of inelasticity. in
! ,‘.::\.
To analyze the field right near the tip Al’ we follow the arguments that ;}ﬁ
have been introduced for small~scale yielding. Thus, we magnify the geometrical Es
».:"--
scale near Al’ so that the geometry becomes one of a semi-infinite crack in a :}:j
S
full space, as shown in Fig. 1. A cartesian coordinate system is centered P}:
at the crack tip. For the plane strain case, possible boundary conditions i
on the bounding surfaces of the body are replaced by the asymptotic condition E{}
3 e
u = Ee o) + kB (nf__(8)] (2.1)
u gy KB K®i
as r + =, where yu is the shear modulus, and (r,9) are polar coordinates ifi,
centered at the tip in the magnified configuration. Note that the definition :}:
N
of the stress intensity factors differs from the conventional one by the N
o
factor (Zn)%. The functions 51 and fII give the angular variations of the ;q;
cartesian components of the elastic near tip displacements for modes I and II, e ﬁ

i.e.,
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(k - cosf/2 - -;'- cos368/2 \
gI(e) =

/
(x + 1 §in6/2 - !2'- sin36/2 /

(x + %) sin6/2 + % sin368/2 )

o |
I ("<+%) cos6/2 - -;—' cos36/2

- A+3u
)\+p

is a constant in terms of the Lamé's constants A and u .
We now proceed to the governing equation for the problem. The strain
1> 1

. . . T
€ =57 = 70+ ()]

is usually decomposed into the elastic part ée and the inelastic part
01
€

as
The elastic part is related to the stress rate i by Hooke's law,
t = agere® + 2ug%

where 1 is the unit temsor and "tr" is the 3-D trace. Since the effect of

inertia is not considered, the equilibrium equation applies:
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= 0 . (2.7)
An equivalent form of (2.7) in terms of the displacement rate g follows _._
-.,:_,-
from (2.4), (2.5), (2.6) and (2.7) as oS
RO
2% = gest (2.8) R
X e
where "‘
L) 2e . r'::'":
= ) [
AYa = wvlg + Ovkw) 99-3 (2.9) e
’:x;-.
and for convenience we have introduced the quantity c}i by LN
gt o= azered 20t . (2.10)
Equation (2.8) is the governing equation for our problem. This equation, X
together with the boundary conditions ; ~‘
t:i=i-n=0 on x,=0", x; < o, (2.11) o
.‘:: ]
E )
and an asymptotic condition of the form (2.1) with u and KI I replaced by :r;.r
’ W
. +E . .E .
4 and KI.II’ defines y. When K.[.II 0, the behavior of the elastic solutiom .‘_:::_:_.
S
| away from the crack tip becomes ‘:-}'.}
| e
~ 0(r 9. 2.12 =7
| §-0a™Y (2.12) %
To complete the formulation, we supplement these equations with the regularity :'-.'.“:;‘
requirements at the crack tip: -‘,:'.‘:ﬁ-
U - bounded as r + 0 (2.13) l,
i~ o(l/r) asr+ 0 (2.14) '{:"t
Cota
In the present problem, we will also discuss the mode-III case, where "'{
taB =Tyy =y, " 0 (a,8 = 1,2). We prefer to use the stress function ¢ .'\
-‘:\‘.‘
because it makes the stress computation easier. The stress function defines \::.
v
the stress components e
lfl{
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(a = 1,2) (2.15) W

Q

QR

w
B Ton

as . (’ L

- X
T, ™ eug 2t (2.16) =

[ W e o

where eaB is the permutation symbol.

The compatibility condition

v v
-

%38386a =0, (ea: a ea3) (2.17) {;2

r v

v

together with (2.5),(2.6) and (2.16) yield the governing equation

PN, AN A, U
hl
4 wi S

V2 = 2ue g3 &y . (2.18) i
"
The boundary condition on the crack faces and the regularity condition Ezg
F analogous to (2.14) yield Ez:
¢ = const (2.19) ,;:
on the crack faces with the constants for both faces being the same. Also, Ei
on the crack line, we have ;é?
Ty - 3-2¢ =0 . (2.20) :
Finally, the asymptotic condition is
When k?II(t) = 0, (2.21) is replaced by 4'
¢ -~ O(r_%) as r + =, (2.22) @:
In this case, the constant in (2.19) is zero because &(0) = O, as follows ’t:
NS
from Li;
0 -{ t,dx, = - [ 3,0dx, = $(0) = ¢(=) = $(0) (2.23) “
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where (2.22) has been used.
In the sequel, we will consider only the cases where

~E

Ky 11,7718 = 0 - (2.264)
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3. Representation_ of the Velocity Field

e

%

The term on the rigit-hand side of the displacement-rate equation (2.8) i

M

is of the nature of a body-force distribution. This implies that the solution if
bf‘

to Eq.(2.8) can be expressed by the use of a Green's function. Representations o

(N ]

in terms of Green's functions are at the basis of the boundary integral equation

.y

.'.-"f'r’.-

method (BIEM), and they have therefore become quite well known. For rate-type
inelastic analysis the appropriate representations were first developed by
Swedlow and Cruse [ 8]. This Section gives a brief derivation of such repre-
sentations for the purpose of making the paper self-contained. For further
detail we refer to Mukherjee [ 9] and the papers cited there.

For an unbounded body containing a semi-infinite crack, the Green's

function g(g,y) is defined by

AYG(x,7) = - 18(x-D)- (3.1)
*
where x = (xl,xz), Y= (yl,yz), and the operator Ax is defined by (2.9).

. .
= 07) we have

On the faces of the crack (xl< o, x2

T.G(x,y) =0, (3.2)
where Txg stands for the elastic tractions computed from G. We also have

G(x,y) ~ 0(log|§l) as |§| > o (3.3)

G(x,y) ~ 0(1) as |x| ~0 , (3.4)

ng(g,y)~ 0(1//|§|) as i§| +0 . (3.5)

A standard analysis based on Muskhelishvili's method yields G(x,y) as

[ ]
o

1 (z -z ) (z-2) , ,
> 22 - Klog(/z—/zo)(VZ - 'Eo)

( G11 + i 021 ) ) {
G, 1 G, 2mu(14x) (i Wivz (V2 +/3)*

...<21og(/z+/£0) - logt/'z + /zo)
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z °E - ZE -Z ; N
+ (_1)) {_g_( o "o - z-2 ) + —-%_—(z—z +4 -2 O } . (3.6)
/Eo(/zwzo) VZ (/2 _+/E) 2(z-z ) °  /z

where « is defined by (2.3), and

z = x; + ix2 > 2,V + iyz. (3.7)
Equation (3.6) agrees with the expressions given by Erdogan [10].
A suitable representation of the solution to (2.8) is obtained by the use

of Green's identity:

* *
(A v)*w dA_ - j. (A w).y dA_ = " (T v)-w dc - .[ (Tw)ysvde , (3.8
x~’ = Tx X X . x~’ =~ %’ X
A 3A 3A
R,¢e »E R,e R,¢

which holds for an arbitrary pair (v,w), and where AR,e is the domain bounded
by circles of radii € and R (0 < & < R) centered at the tip, and by the crack
faces, as shown in Fig. 2.

We now substitute é(g) for v(x) and G(x,y) for w(x) in (3.8). Subsequent

use of the divergence theorem and the regularity conditions (2.13), (2.14),

(3.4) and (3.5), followed by letting R~ », ¢ +~ 0, and using (2.12) and (3.3),

gives
imo = [ Q(y,g)-éi(y,g)dﬁxy . (3.9)
R? 7
or: in component form
a, (x,t) = f V.G .(17,x)c3i (y,t)dA . (3.10)
J - yk 23 0okt y

R2
In deriving these equations we have assumed that the integrals in (3.¢°
or (3.10) converge. For this to be true, it is sufficient to assume that

él satisfies
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11 .
¥
_ . A %1
W |7 ~ o(x ) as r ¢+ 0. (3.11)
w A %, '
\ lg | ~ o) as r > » (3.12)
_ with
1!
-f Gl > "l » a2< "‘1 . (3-13a'b)
o
::j Although (3.13a) appears unmnecessarily restrictive, it turns out that
these inequalities guarantee the satisfaction of the conditions (2.13) and
(2.14) automatically. It is noted, however, that (3.13) is just a sufficient ::::
o
condition. a
\ For the Mode III case a similar procedure gives
N 1
' X,t) = 3. G(ysx)e,, & (y, 3.14
3 $(x,t) [ g, C@Bey H, ) (3.14)
G
P o -
G where e
" 1 (V2 = /2 )(/Z - V2 ) Ny
0 - ' -~
: (Vz + /I’:‘o)(»’z + wzo)
~ Hence we have
> i
2 5 = e 3% f 3 G(y,x)e, &, (y,t)dA . 3.16
X cp(:f,t) pq 2%q y (¥’~) jK k(z ) v ( )

Rz
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4. Asymptotic Expansions

In the following sections, we employ the potential representation for.
u given in Section 3. The results of this section are analytical, while
numerical results are presented in Section 7.

For a certain class of constitutive models the quantity &i, given by
Eq.(2.10), is finite. For example, a viscoplastic model proposed by Bodner
and Partom [ 1] shows this property. In this section we will obtain the

asymptotic expression for é for the case that lim Qi(r,e,tb exists for. all 6.

r+0

In a conventional asymptotic analysis one seeks near-tip fields of the

forms
4=y +u, + g3+ -— (4.1)
.1 i .1 .1
6" =g + g5 + o + ——- (4.2)
where Qj, éj (j = 1,-—) are functions which are less singular near r = 0
with increasing subscript. Since near r = 0
gt = 510,8,8) +0(1) (4.3)

is bounded, and

R ECIOM (4.4)

we find by substituting (4.1) and (4.2) into (2.8)

a*g, = 0 (4.5)

P AR
g‘ l lyl"‘z ‘l““

P
N

L

h ]

-
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ARG, - 957 = 0 : (4.6)

Equation (4.5) implies that él is of the same form as for the linearly

elastic case. The appropriate separation of variables form of (4.6) can only
be guessed at this stage. One might try

g, =t £(8,t) (4.7)
This expression for f(e,t)does. however, not lead to a solution of (4.6)
because the corresponding homogeneous problem has nontrivial solutions. In

the Mode I case, for example, the homogeneous equation

A*[r £(8,8)] =0, (4.8)

with boundary conditions

8 =m: Tlr £(8,t)] = 0 (4.9)

9 = 0: 1,-Tlr £(8,t)]=0 and f,0r £(8,£2]1 = 0 » (4.10a,b)
where ij are unit vectors, has a solution corresponding to a uniaxial tensile
field in the x, direction. Hence the approach based on (4.7) becomes

1
ambiguous at this point.

An unequivocal form of the term éz can, however, be obtained directly
from the representation given by (3.10). Using polar coordinates (r,8) and

(ro,eo) for y and x, we split (3.9) into two integrals as
Tr

o]
. .1
g(ro,eo.t) -‘/.I r Yg((r,e;ro,eo)'g (r,8,t)drds

T O
Lid [--]
+ [ f r UG (r,0;r ,8 )3t (r,0,t)drde (4.11)
_ ~~> 0’0’ =
- T
(o]
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: Here the gradient operator is taken with respect to the polar coordinates

3 r and 8. Next ¥G_ and VG, are expanded into power series of r. We can

' write

< nt+l

: > T 2

- r<r: r %6, = I (;—9 un+l(e,eo) (4.12)

n=0 o

- n+l

- r>r: T G, = I G;—) §n+1(e,e°) (4.13)
. n=-1

. The coefficients in (4.12)-~(4.13) can be obtained from (3.6). It is found

that N, is independent of eo.
5 Substitution of (4.12)=(4.13) into (4.11) yields after some rearrange-
: ments
. . 3 - ;i . .

y g(ro’eo) go + §1(90)r° + §<(r°,9°) + {>(ro’eo) (4.14)
v

O where

.J

: T e

, [ | s - .0rarce (4.15)
e =T o

o

- T w

! iy = [ [ #u 0.0 )-8 . 0)dra0 (4.16)
- 1o ~ * o’ ~ ’ .

J] -T ©

+

", . f fo ® r ——nzl b

- §<(r°.9°) = J { . [nio (;;) !n+1(9.9°)] N (9)-N (G )C—-) }e6 (r,e)drde
- (4 17)
g ntl

tear= | 1 TeZy, o J1-gHx,0)drdo (4.18)
o o r n+l -

- r_ n=l
P
'f The dependence on time t, shown in (4.11) is implied, but not explicitly shown

A\
- in (4.14)-(4.18) and in the sequel. In the next step the orders in T, of the

5 integrals (4.17) and (4.18) are determined.

A A R N T T A S
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L]
v: ’ Since éi(r,e) has an estimate given by (4.3) it follows that (4.17)
o L)
" is of order r , i.e.,
thy o
‘ ;<(r°,9°) =T A(eo) + o(ro) (4.19)
o where o]
\J ".:li
¥ ™ - s
S \ - 2 - Sl
A = [ 0z Zpu, (0,8)1-8 (&) - 2 N,(6,0)}-51(0,0)d8  (4.20) 2
=7 n=0 !i
o' '.‘ /
N A discussion of the order of the integral in (4.18) is given in Appendix A. .
2 The result is
8 ;>(r°,90) = gz(eo) r logr +r g(eo) + o(ro) (4.21)
4
{ where
X A
- 3 - - St
£,08.) :i N,(0,8_)+37(0,0)do (4.22)
:S The function g(eo) is defined by Eq. (A.6). By combining (4.14), (4.19)

and (4.21) it is concluded that g(ro,eo) is of the form

. - . . ;5 . .
. g(ro,eo) go + gl(eo)ro + gz(eo)ro log T, + §3(e°)r° + o(ro) (4.23)
'é where 3
- . . . \':
- £5(8.) = A(8 ) + B(8 ) (4.24) :

The constant go in (4.23) corresponds to a rigid-body motion; it will

..
o]
£

be left out from further considerations. Some additional manipulations

r oo
‘.;‘0'
S ol

reduces gl(eo) and gz(eo) to the forms

’

\
X AR5

£1(6,) = [RyEL(9)) + Kpp£, (9 )20, (4.25)

Lll "L‘ o
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éz(eo) - iI((K+1)cose) + iII(sine ) , (4.26)
(x=3)sineg -cosf
where gI(eo) and gII(eo) are defined by (2.2a,b), and
K (t) = — fﬁf r-;i D c}i(r 8,t)drd6 (4.27)
K11 2o ) ) Pp, 1172 (T00 , .
Also
. 1 “ i
L = - ey -j;r By pped (0,8,6)d0 (4.28)
In (4.27)-(4.28)
5 39 3 76 3 36 3 78
(< 2)cos2 + 5 cos > > sin 2 + > i 3
D, = (4.29a)
~1 3 36 3 76 1 36 3 79 ’
-3 sin > + 2 sin 2 (¢« + 2) cos 3= = 7 cos 3
1 30 3 76 1 30 3 °)
DII - (x 2) sin 3 ) sin 7 5 cos 3 +-E 3 , (4.29b)
1 36 3 79 3 38 3 76
2c°82+2C 2 -(K-z)sin-2-—+zsin2—
(1 - x)cos28 - 2cos4d , - 28in46
gI = s (4.30a)
~2 3in4é (1-x)cos28 + 2cos4b
(x=3)sin28 + 2sind4®, 2(cos28 - cos4d)
E;p = (1+<) ( . (4.30b)
2(co0s826~-cos4b) (x=3)8in26 -~ 2sin4d
It is shown in Appendix A that 53(9) can be written in the form
. s . . (u<+1)coseo ., [sin8 |
£,(0) = f (838,):g7(0,8)de + C, +C, ) (4.31)
- (K-3)sin90. -cose°

lengthy manipulations

The function g(e;eo) is complicated. For the Mode I case we find after

'l 'l
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: f 2 2
B - - ——— ' -
ug4(8,) fo [ F(8:0 )KL~ T &' &' »6%(0,8)2'do
2 " 2
' . — e 9! '
[ FO30)(2 x &' +2' x £)§(0,0)8"de+ £ F(9:0,) (L - 35— &' x ")
&' (0,6)246 - 2 iow J F(858 ) (g(8) + 28)do-
G-oripn( ° )+ ¢ g (4.32)
sine
where C is a constant, and
cos(min(&,eo))sin(max(e,eo)) 0
F(850 ) -( . (4.33)
\ 0 -sin(min(e,60))cos(max(9,8°))
Also
" /cos® -sind
2- :( > » &' = > (4.348,b)
- sind cos8
(x+1)cos®
g(e) = ( (4.34¢)
- (x=3)sind
The symbol x defines a product of a column and a row vector. For
example
cosfd -cos6 sin® cos?6
£ x g = [-8inf cos8] = (4.35)
siné -sin20 cosf siné

Equation (4.23) implies that the dominant singularity of the strain rate
has exactly the same form as in linear elasticity. The rates of the stress

intensity factors KI are given by (4.27). The second singular term, is of

,II
the order of logr near the tip. The magnitude of the multiplying term is

determined only by the distribution of Qi at the tip. Because of this last

.'4-":.".\- RS
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property, the expression (4.28) holds true for any crack configuration, ::?
Y
. whereas (4.27) is true only in the sense of the "small-scale yielding". BhY
The logarithmic singularity in the strain rate does not give rise to a 'ﬁ;
. logarithmic stress singularity except in T for mode I. C:ﬁ
. )'::w;
\ For the mode I1III case, we can use the same general approach to show that i}
. . 6 A
KI (t) [-sing

.« IT 2 * =

o T = —7;— 8 + b(e) ’ (4.36) E‘:
- \ cOST .
g 2 S
. where 8
N
i © Rind
5 . 1 ] ]’ .1 30 , .1 30, - <
: KIII o J de o [ cl(r,e)sini-'+ oz(r,e)cosi~]r dr (4.37) fﬁ:
: s
. 1 eo i i ,'t':'
h(e ) -( 0 f [£'°67(0,8)cos8 - 2+G (0,9)sinB] d6 =
° / o =
: e
" D.'
2 o o
R »
. 0 v i i roe

. - [2'+67(0,6)sind + £-g (0,8)cosB] dé r
l e .

o

- S
- o
) 1 N
: - (267 (0,8 ) 1% (4.38) s
. Note that the stress rate and hence the strain rate do not have logarithmic i;
singularities. As for the mode 1 case, we can relate the absence of the 3{:
R

logarithmic term either to the non existence of a non-trivial solution to a

(3
PR
B

.
T
t..

certain boundary value problem or to the lack of a certain term in the far

]

5,

>4

N field expansion of the Green's function.

'S

'I..v' Ls

In the published literature, the choice of terms for asymptotic expansions e
is generally made on a trial and error basis. The analysis presented in this

gection gives a more rational foundation to asymptotic near-tip.
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5. . The Bodner-Partom Model

In Ref.[1 ], Bodner and Partom proposed a set of constitutive equations
for an elastic-viscoplastic material. These equations have the convenient
property that no separate specification of a yield criterion is required, nor
is it necessary to consider loading and unloading separately. Within the
context of the Bodner-Partom model both elastic and inelastic deformations are
present at all stages of loading and unloading, but the inelastic deformations
are very small at low stress levels. The Bodner~Partom equations have been
used to model the mechanical behavior of several metals over a wide range of
temperatures and strain rates. Very satisfactory agreement between theoretical
and experimental results has generally been obtained. For a recent discussion
of the Bodner-Partom model we refer to Ref.[12].

The constitutive equations follow by supplementing Eqs.(2.5) and (2.6)
with an expression for the rate of inelastic strain. In a recent version of

the Bodner-Partom theory this strain rate is given by, see [12],

T'

tap, 73; exp[-(22/31,)"/21, (5.1)

€

where 1' is the stress deviator

-~ ~

' =1 - %-} trT , (5.2)

and

Also

J -%—: ' . (5.3)




=
H 20 4.'
; 2
\ f:&::
i ' '
¢ -me -~ ’
b Z=2 + (2 -2)e (5.4) :
: 1 o 1 .:
A W,
% In (5.1) and (5.4), Zo, Zl, m,n and Do are material constants, while Wp is S:\
. LY
! the work over the inelastic strains, ¥
; W o= fr- el ae . (5.5) e
ﬂy p d -~ ~h~.\.
; A
i For uniaxial tension it is simple to plot the inmelastic strain rate e
. versus o/2, For various values of n the curves are shown in Fig. 3. !?;
\ ' ,:.-
? The linear plot of Fig.3 shows that éi remains very small at small stresses f:}
y T
. with a rapid change over a small range of o/Z (the "yield" region), and that i:{
an asymptotic limit is approached as ¢ becomes large. jgs
2
It is of interest to note that the components of éi, as defined by KX
Eq.(5.1), are always bounded. Even if T is singular (which is the case at a :&:
crack tip), the singularity of T as r + 0 will be cancelled by the singularity 'E;
of /Jz in the term g'//JZ. The term exp[-(ZZ/BJz)n/Z] is bounded whether 32 ';:
is singular or not. Hence Eq.(5.1) implies that the inelastic strain rate is :fi
bounded at a crack tip. It then follows from Eq.(2.10) that the components f;;
of Qi are also bounded at a crack tip, and it can thus be concluded that the :{i
asymptotic results of Section 4 apply to the Bodner-Partom model. tﬁ:
o
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. 6. Numerical Procedure

A numerical procedure has been developed to compute the stress intensity

factor and the opening stress t,, at a position on the crack line. As pointed

22
out by Mukherjee and co-workers [13], a numerical evaluation based on the
representation (3.9) is very efficient for viscoplastic problems and for
viscoelastic problems of the Maxwell model type. Here we use this approach
@enerally referred to as the BIE method) for crack tip fields governed by the
Bodner-Partom equations. The procedure proceeds as follows

1) Compute the initial field. Since the inelastic strain is zero at

t = 0, the initial fleld is simply the linearly elastic one. In the present

context this field is

8] pmg = ‘;—j [KFE (8) + KE £.(8)] (6.1)
Hence, the solution is known for t = mAt with n = 0, where At is the time
increment.

2) Subdivide the near-tip domain into cells, and compute éi at the
centroid of each cell by using (5.1). Then assuming that éi may be taken as
constant over each cell, 4 is computed by using {3.9) and Vu by
differentiating (3.9).

3) Compute i from (2.5) and (2.6). Update T by using

t{(n + 1)At] = t(nat) + At T(nAt). (6.2)
4) Use the updated value of T to compute éi as in 2), and repeat 2)
and 3).

When the edges of the cells are straight, the integrals involved in




- .
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(3.9) can be evaluated analytically, as discussed by Cruse and Polch [11].

By picking up the square-root singular terms in these integrals and summing
up their coefficients, ﬁI.II can be computed. Alternatively, the computation
of kI,II may be carried out by using (4.27) with the piecewise constant

approximation for &F,

AN R I I e I it e L 4Tt T et e e e e e G g et e e .
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_7. Numerical Results ::'

A

e

Numerical computations have been carried out for the non-hardening case -y

>

of the Bodner-Partom model. - With reference to Eqs.(5.1) and (5.4), this

case corresponds to

e |
e
A.l L

ZO/Z1 =1 (7.1)
It is then convenient to introduce non-dimensional quantities as 5
follows
E.2
U=u (uZ//B)/(KI) s T =1 /(2/V3) (7.2a,b)

n=1, and v = 0.2

X = b e (22/3)/(K§)z , t=t (uDo)/(Z//3) (7.3a,b) ;;f
. de o
E=o /D, | (7.4) S
Here the dot notation represents the derivative with respect to t. In >5ﬁ
: terms of these dimensionless quantities, Eqs.(5.1), (2.6) and (2.8) convert Ei¥
. into EEE
B = (T/GT T Hexp - 3T TH ™) (7.5)
T =2@h1+ T+ @7 - 28 (7.6) ]
72y +-l§£ 7.y -2y.§i , (7.7) E?‘
where § and V2 are the del operator and the Laplacian with respect to the le
dimensionless optical coordinates ;1, and T' is the dimensionless stress ;i;
deviator. Since A/u and (A+u)/u can be expressed in terms of the elastic a
Poisson's ratio, v , it now follows that numerical values have to be chosen
only for v and n. Here we choose .F'

...............
________________________
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) For the numerical procedure based on the boundary integral equation '?b
Sy
. method described in Section 6, the cell arrangement shown in Fig. 4 has E;.
R DAY
been used. The expression for the time rate of change of the stress intensity ;E

factor is given by Eq.(4.27). Once the inelastic strain rate has been :;f

computed, the term éi can be determined and (4.27) can be evaluated :fi

] numerically. A subsequent numerical integration with respect to time 'i
" produces KI(t). Figure 5 shows KI(E)/KE versus the dimensionless time t. ;l:
X It is noted that KI(E)/K§ decreases with time. Also shown in Fig. 5 is :EE
= - S > = ;‘:".
the normalized stress Tzz(xl,O;)/Tzz(xiJLO), evaluated at xl 0.0014. The .qg

two curves diverge rapidly as the dimensionless time increases. :{f

. It is instructive to compute the actual physical distance to the crack -
tip which would correspoud to ;1= 0.0014. Suppose we consider a crack in an i?f

)
& unbounded medium under far-field uniform temsion Tog = 0ot Then tﬂ
] :"': 9
2 K? = co/(na). For titanium, Ref.[l] suggests the following value for the yield v
. .ih.:
i stress, g, - 250 N/mm?, while Z - 1200 M/mm®. Let "
’ .:::
a, - °Y/2' Equation (7.3a) then yields x - 0.102ax_ . Hence x = 0.0014 '

) - 9
3 corresponds to X~ 1.428x10 4a, which is a very short distance to the crack Q;
(9

A 4

tip. The two curves in Fig. 5 thus imply that even very close to the crack <

tip, the singular term by itself would give a very poor approximation to the near- ff;

5 tip stress t,,, with an error which increases with time t. The relation o
- For
- between physical time t and dimensionless time t can be obtained from (7.3b) e
- as t =.635x10%t, where the following values from Ref.[l] have been used .iﬁ
. e
N Do ~ 10*/sec and u = .4QXI05N/mm2. As predicted by the constitutive model -iﬁ
e

- _ik
.. \:,:.
N :i‘
N '\.:
- .}:.
E:

. - \:\‘““‘.:. ‘‘‘‘ N .;‘.\




used in this paper, the relaxation of the stress intemsity factor takes
place very rapidly.

An improved asymptotic representation of the near-tip stresses can be
obtained by including higher order terms. The calculation of these terms

requires the evaluation of the integrals for L., Eq.(4.28), and §3(eo).

1
Eq.(4.32). The r logr term in Eq.(4.23) contributes only a constant term

to %22. A constant contribution is also obtained from the term §3(0°)r°.
After the calculations have been completed we find on the crack line (8 = Q)

; R(t

T, —}.r.l - 3.376 (7.9)
or

T,y KCE) _ 3.376% . (7.10)

This two term expansion gives excellent agreement with the numerical result,
as can be seen from the numerical values listed in Table 1.
Figure 6 shows KHI(E)/K;“II versus the dimensionless time t. Also
shown is the ratio T,(%0,t)/T,(x,¢.0) evaluated at x = 0.0047. As for the Mode I
case, the two curves diverge rapidly as t increases.
It 1is relatively simple to write out explicitly the asymptotic results

for the Mode III case. At the crack tip we obtain from Eq.(7.5)

-1
cos?

Use of this result in (4.36)-(4.38), and subsequent integration with

respect to time yields

T, e tw ot e lTa e e LT ey e, ma e R W e e, - - . N R R S P Y
(T P T o T T T P P P I ST Tt S TN RS PR B I ST S Sl S S SR S

o . » . . e e e T e R R I A AT . o ot .
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KI (v) -sin- singg + 3 sin2

1@ 2 1l - 2 2
T2 ~ E-t (7.12)

/; e \ - 39 - 3 e

& coss— cosy

The values of T2 at ;1 = 0.0047, §2 = 0 computed according to Eq.(7.12) and
by the BIEM have been listed in Tabie 1. Good agreement is observed.

The results presented in this section show that the square root singular
term presents a very poor approximation to the crack tip field even at very
small distances from the crack tip. The approximation becomes worse as
time increases. The use of additional terms in the asymptotic expression
for the particle velocity provides, however, a very satisfactory agreement
over the whole range of time between the corresponding asymptotic represen-

tation and the numerically computed stress component at a crack-line point

just ahead of the crack tip.
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Appendix A: Finite Parts of Integrals
The "finite part" of an integral, denoted by pf, is defined as
(see [14), pp. 75-104)
® R
pf .[ f(x)dx = 1im [ j. f(x)dx - divergent part as R+w, ¢+o0] (A.1)
(o} R+ €
£0
A typical example is
r logr , n=1
° 4r o
pf f T 1-n (a.2)
o T r
T vt
For small r° it then follows that
(logr )61(0 8) + o(r ) n=1
9 [} [}
Ty §t(e.8) ° °
pf ] e dr = (A.3)
(V] T 1 l-n,.1i l-n
(1_n r_ )0 (0,9) + o(ro ), n>1

where we have used that éi(r,e) is bounded at r=0, see (4.3). Consistent with

the definition (A.l), it is convenient to rewrite (4.18) in the form

s ® ®? n+1 fo r o+l
I.>.(eye°) = [ de { z [Pf [ (_) _,n+1(9,60)§i(r,6)dr - pf [ (r_o) 2
- i o1 A ]
N 4108 )c (r,8)dr]} (A.4)

By using (A.3), Eq.(A.4) can be rewritten as

1,(8,8) = £,(8 )x_log r_ +r_B(8 ) + o(r ) (A.5)

where
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fz(eo) has been defined in (4.22) and

i

. ? §(r,8) ¥ 2 A
§(0°) = f;demz(e,eo) pf L - dr + nfz ;_-]—.I_‘.In_i_l(e,ﬂo)-g (0,8)] (A.6)

Equation (A.5) shows that the order of I as 5;0 is defined by terms r log r

and T .
o

It is too complicated to compute all the terms in Eq.(A.6) by using the
expansion given by (4.13). Another way of computing the relevant terms follows
by considering Eq.(4.11) for the case éi(r.e,t) £ 1. From (4.11), (4.14),

(4.17) and (A.5) it then follows that

o = -
2
pff IVGdr =T [ I —==M (8,0 )+ I 2
o °" nmg ™3 TmHl ° n=-1 n-1 l-‘-In-i-l(e’eo)]
n¥ 1
- N,(0.8 ) r, log r_ (A7)

Next we define

@
1
n + .8
g(e.eo) T pf .L rVGdr gz(e,eo) log T, (A.8)

It can then be verified that

. T i .
£,(0) = [ P(0,8 )¢ (0,0)d8 + cl(

(k+1)cosf . siné
°) +C, ( ° ) (A.9)
T - (x=3)sinb

C
~cosd
o o}

The terms with the constants él and C2 come from the first integral of
(A.6). The comstant 62(61) vanishes for Qi having Mode I (I1) symmetry.
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The manipulations that are required to evaluate (A.8) by the use of (3.6)
are lengthy and complicated. For the Mode-I case the result is given by
Eq.(4.32).
Now that the third term in the expansion (4.23) is known explicitly,

namely,

ﬁz - fz(e)rlogr (A.10)
and it is known that §3 is of the form
an alternative way of computing §3(6) is provided by returning to the Sj
substitution method outlined by Eqs.(4.1)-(4.6). By collecting terms of t£¢
order r we find -

x_ . *, i
Ax[r§3(e)] = Axgz + v 9] (A.12)

A direct calculation shows that rAIQ is a function of 6 only. Hence the
terms on the right hand side of (A.12) are r-l times a function of 6 . The
standard Fredholm argument shows that for boundary conditions appropriate to
Mode I, (A.12) does have a solution which is unique to within a term which

would give rise to a uniform contribution to Tt The solution to (A.12)

11°
can now be determined by well established methods. The result is given by

Eq.(4032)0




Fig. 1: Crack-tip geometry )
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Mode I Mode III e

o z/v3) /(z/V3) =
ZI73 2 2 2358

2 terms BIEM 2 terms BIEM . _(xf,

22.18

22,28

13.04

13.10

18.78

18.82

11.05

11.17

14.47

14.35

8.93

9.12

10.08

10.42

6.84

7.12

o

Table 1: Comparison of asymptotic representations with numerical

results calculated by the BIEM.
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